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Capacity and Time Windows Constraints 
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Horario) 
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Abstract. We consider a Pickup and Delivery Vehicle Routing Problem (PDP) commonly 
encountered in real-world logistics operations. The problem involves a set of practical complications 
that have received little attention in the vehicle routing literature. In this problem, there are multiple 
vehicle types available to cover a set of pickup and delivery requests, each of which has pickup time 
windows and delivery time windows. Transportation orders and vehicle types must satisfy a set of 
compatibility constraints that specify which orders cannot be covered by which vehicle types. In 
addition we include some dock service capacity constraints as is required on common real world 
operations. This problem requires to be attended on large scale instances (orders ≥ 500), (vehicles ≥ 
150). As a generalization of the traveling salesman problem, clearly this problem is NP-hard. The 
exact algorithms are too slow for large scale instances. The PDP-TWDS is both a packing problem 
(assign order to vehicles), and a routing problem (find the best route for each vehicle). We propose to 
solve the problem in three stages. The first stage constructs initials solutions at aggregate level 
relaxing some constraints on the original problem. The other two stages imposes time windows and 
dock service constraints. Our results are favorable finding good quality solutions in relatively short 
computational times.   

Keywords. Vehicle Routing, Logistics & Distribution Planning, Scheduling, Time Windows.  

Resumen. Consideramos un problema de Ruteo para Entrega y Recolección (PDP) el cual es común 
encontrar en las operaciones Logísticas en el mundo real. El problema involucra un conjunto de 
consideraciones de tipo práctico que han recibido poca atención en la literatura científica de los 
problemas de ruteo. En nuestro problema, se presentan múltiples tipos de vehículos los cuales están 
disponibles para cubrir un conjunto de requerimientos de entrega y de recolección. Cada uno de estos 
requerimientos debe ser atendido dentro de cierta ventana de horario. Los requerimientos de 
transporte y los tipos de vehículos deben satisfacer las restricciones de compatibilidad las cuales 
especifican algunas órdenes que no pueden ser cubiertas por cierto tipo de vehículos. Además se 
incluyen algunas restricciones relacionadas con la capacidad de andenes disponibles para dar servicio 
y atención lo cual es común encontrar en las operaciones del mundo real. Nuestro problema requiere 
ser atendido para instancias de gran tamaño (ordenes ≥ 500) y (vehículos ≥ 150). Este problema 
considerado tal como una generalización del problema del agente viajero (TSP), debe ser visto 
claramente como un problema difícil de resolver matemáticamente hablando (NP-Hard). Los 
algoritmos de solución exacta son demasiado lentos en tiempo como para poder ser utilizados en la 
solución de instancias de gran tamaño. Nuestro problema PDP-TWDS es al mismo tiempo tanto un 
problema de empacamiento (para asignar las ordenes de transporte a los vehículos) así como un 
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problema de ruteo (encontrar la mejor ruta para cada vehículo). Nuestra propuesta consiste en 
resolver el problema en 3 etapas. La primera etapa construye soluciones iniciales a un nivel agregado 
para lo cual se relajan algunas restricciones del problema original. Las otras dos etapas se encargan 
de incluir las restricciones de ventana de horario así como de capacidad de andenes para el servicio. 
Nuestros resultados son muy favorables al encontrar soluciones de alta calidad en tiempos de 
solución relativamente cortos. 

Palabras claves. Ruteo de Vehiculos, Logística, Planeación de la Distribución, Programación de 
Transporte, Ventanas de Horario 

Introduction 

Multiple Vehicle Pickup and Delivery Problem with Time Windows and Dock 
Service Constraints (PDP-TWDS) is an important problem in logistics and 
transportation management. The PDP-TWDS is a variant of the well-known 
Vehicle Routing Problem with Time Windows (VRP-TW). Particularly, our real-
world application deals with the schedule of a transportation operation on a network 
with several plants and distribution centers. Vehicle routing plays a central role in 
logistics management. A wide variety of vehicle routing problems have been 
studied in the literature. Different vehicle routing problems address different 
practical situations but focus on a common and a simple problem, the efficient use 
of a fleet of vehicles that must pick up and/or deliver a set of customer orders 
within a time window framework. We need to identify which transportation orders 
should be covered by each vehicle and at what times so as to minimize the total cost 
subject to a variety of constraints.  

As is defined, in a general PDP problem a set of routes must be generated in order 
to satisfy a set of transportation requests at a total minimum cost (or a similar 
objective function) and subject to a set of constraints. Each transportation request 
(i.e. a transportation order) specifies a volume of product, a site of origin and a 
destination site. Each request must be transported by only one vehicle. However we 
consider that some trans-shipments can occur across a route sequence from one 
node to the next. For all this operation, a previous defined fleet of vehicles is 
available. These vehicles are spread throughout a set of specific depot sites. This 
fleet of vehicles may consist of different vehicle-types, each with a unique set of 
transportation relevant characteristics. Indeed, in a PDP-TW problem, time 
windows constraints are usually added to the transportation request. This is 
specifying a time interval for pickup and/or delivery operation at the origin or 
destination site. Our business application considers that the available vehicle fleet is 
represented on a node basis. In other words, at the beginning of the planning stage, 
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each plant o distribution center provides the expected number of available trucks 
per type and at a specific starting time hour. This information defines the 
consolidated transportation capacity. Because of carrier requirements contract, we 
start and finish a route at the origin depot. Indeed, contract payment used in practice 
by the industry fix the transportation price on the basis that a route starts and 
finishes at the first pickup site. In our PDP context, each transportation request has 
a single time window. This is an earliest pickup time at origin and a latest delivery 
time at destination.  

From a given set of transportation orders we have an origin and a destination (O-D). 
Usually transport planners determine first the best route for each O-D pair, and later 
assign trucks to these predetermined routes. The problem of determining the best 
assignment of trucks to O-D routes is typically referred as an assignment problem 
where trucks are assigned to routes or transportation lanes such that all 
transportation orders are covered and transportation costs are minimized. It is easy 
to verify that with each head haul move of the truck, goods are transported from its 
origin to its destination and revenue is generated. However, without goods, the 
truck moves an empty haul, in which only costs are incurred and no revenue is 
generated. Attempt to secure a transportation order from a destination location back 
to the location where the truck originates results on an unsuccessful practice. This is 
because the truck will run an empty haul. These empty hauls represent a serious 
problem for transportation operations, as well as the country's economic system. 
This is clearly true because an empty haul does not generate any economic value. 

We can verify that the least efficient route that can be planned by a dispatcher is the 
one of simple trips where the vehicle travels loaded from the origin to the delivery 
site and then returns empty. On this case, half of the hauling distance is traveled 
empty. Even more if a dispatcher tries to avoid simple trips, the actual structure of 
transportation flows that he is responsible for does not always permit it. In this 
situation, pooling these transportation requests with those of another dispatcher may 
avoid simple trips planning by replacing the empty return of a simple trip with a 
transportation request of another dispatcher. Indeed, the new structure of 
transportation flows generated by the collaboration of two or more dispatchers will 
allow transportation cost-savings. The empty part of the overall route is smaller 
when two trips are pooled together compared when making them independently. It 
is estimated that at least 46% of truck movements in México country are empty haul 
moves. This means millions of kilometers of empty haul moves and also millions of 
liters of fuel lost per year. This is a major economic loss for the country, especially 
in the current situation where fuel prices have skyrocketed. The Department of 
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Land Transportation note that over 160,000 tons of pollution is released to the 
environment directly as a result of empty haul moves. Thus, empty hauls are a 
serious problem which needs immediate attention.  

Time constrained sequencing and routing problems arise in many practical 
applications. Typically, computational difficult for those type of problems has been 
measured in terms of its size. However the difficult for PDP-TWDS depends 
strongly on the structure of the time windows that are defined around the nodes and 
vehicles as well. Indeed, multiple vehicles environment generates some dock 
service capacity constraints. Both the PDP and PDP-TW are generalizations of the 
classical Vehicle Routing Problem (VRP) and are thus NP-hard. As a result, the 
development of solution methods for these problems has focused on heuristics J.-F. 
Cordeau, G. Laporte, and M.W.P. Savelsbergh (2006). Due to the fact that the PDP 
is NP-hard problem, combined with the reality that practical PDPs are very large, 
having hundreds of requests to serve, there is no much hope for finding an optimal 
model that will work acceptably fast in practice. However, when the problem is 
sufficiently constrained, it is possible to obtain good solutions within reasonable 
computation time. We propose a Hybrid Mixed Integer Programming (MIP) 
approach to this complex problem which is focused on finding good solutions in 
reasonably short time. The paper is organized as follows. In Section 2 we introduce 
the problem definition and its associated complications. In Section 3 we briefly 
sketch some related problems and previous work. In Section 4 we proceed to 
introduce some notation that will be used throughout the paper and we model the 
problem as well. Section 5 contains a description of some empirical results we 
found on our implementation and some concluding remarks are given. 

Problem Definition 

The PDP is a generalization of the VRP, which is a generalization of the TSP, the 
well-known hard combinatorial optimization problem. Considering also that the 
problem in practice is, usually, of a large-scale, it is obvious why the problem is a 
challenge. The general pickup and delivery problem (GPDP) is a problem of finding 
a set of optimal routes, for a fleet of vehicles, in order to serve a set of 
transportation requests. Each vehicle from the fleet of vehicles has a given capacity, 
a start location, and an end location. Each transportation request is specified by a 
load to be transported, an origin, and a destination location. In other words, the 
pickup and delivery problem deals with the construction of optimal routes in order 
to visit all pickup and delivery locations and satisfy precedence and pairing 
constraints. From here we can move on to include some others considerations. That 
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is, the problem deals with a number of transportation orders that are to be served by 
a fleet of vehicles while a number of constraints must be observed. Each vehicle has 
a limited capacity (the capacity constraint). Each vehicle starts and ends at a 
specified depot. A request must be picked up from a pickup location to be delivered 
to a corresponding delivery location. In addition, every request must be served 
within a predetermined time window (TW) interval (the time window constraint). A 
vehicle may serve multiple transportation orders as long as time windows and other 
capacity constraints are satisfied. A solution to the problem should assign requests 
to vehicles and find a route for each vehicle, such that the total service cost is 
minimized and all problem constraints (precedence, capacity, time windows and 
dock service) are adhered with. The total volume of product to delivery on some 
nodes may exceed the capacity of all types of truck. Thus a site within the same 
route could be visited more than once. In addition, in the classical PDP, when a 
delivery has been made, no pickup is allowed until the truck is empty. However in 
our problem's case, when a delivery has been made, we allow pickup even if the 
truck is not completely empty. This makes routing much more complex than 
classical PDP. The problem can be outlined in: (1) objective function and (2) 
operation constraints. 

Objective Function 

The goal of our model is to determine the optimum route for a multiple vehicles 
dedicated for a given physical distribution operation. A route is defined as the 
arrival sequence of a vehicle (i.e. trailer) which has to attend to a set of nodes or 
warehouses waiting for service. This service can be defined as a delivery or pickup 
of any kind of item (i.e. product). In a typical operation we arrive to a node, make a 
delivery for product A and then afterwards pickup for product B that is required on 
another point that is ahead on the route sequence. On any case, the vehicle departs 
from an origin node (i.e. a distribution center) and then returns to the same node at 
the end of the route. An optimal route is obtained when we achieve the minimal 
cost (or distance or time) in order to attend all the customer nodes waiting for 
service.   

Operation Constraints 

1. We have a set of M different vehicles that are considered as the available 
fleet in order to perform a transportation process. For each vehicle entity 
one only origin node is defined. Several origin nodes are defined on the 
network where vehicles start from. At the start of the day, each vehicle 
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leaves from the origin node. Then each vehicle attends to a set of 
geographically scattered nodes (i.e. customers). At the end of the route, each 
vehicle returns to its origin point.  

2. Each vehicle has a finite load capacity. Vehicle Capacity is modeled as the 
quantity of boxes, pallets or weight that the vehicle can load taking in mind 
the space constraints as well. Indeed, vehicle capacity is defined at a SKU 
level in such a way we can cubic a capacity requirement to transport any 
given load mixture. This is any set of different volumes per SKU to make a 
full load. Capacity constraints guarantee that load of items on a vehicle 
should be less than the vehicle capacity. Log trailer is a set of 12 to 16 
individual compartments depending on the truck-type, each with loading & 
unloading access by the sides. This design is not constrained by the nested 
precedence constraints we found on the general freight PDP in which 
loading and unloading access is restricted by the truck trailer rear door. 

3. We have a set of N orders to be transported from origin nodes (i.e. plants) to 
destination nodes (i.e. distribution centers). Each order K member of set N 
consists of a pickup at some location (node i) and a delivery at some other 
location (node j) in the underlying transportation network. Precedence 
constraints must be considered which imply that a vehicle should visit the 
pickup location before the delivery location of a transportation order. Each 
order K member of set N is a specific mix of products (i.e. different SKU’s) 
which has a weight or space requirement. According to the sequence of the 
route, all the time we must observe the load capacity of the vehicle.  

4. Certain compatibility constraints must be satisfied in real-world distribution 
operations because of physical restrictions. For each vehicle entity we 
define a specific set of nodes where the vehicle can operate. In other words, 
a vehicle cannot arrive to nor departs from any node not included on that 
defined set. Something similar is defined at a transportation lane level in 
order to constraint the use of a vehicle not included on a set of previous 
defined arcs. 

5. The quantity of time (i.e. hours) required to accomplish the deliver and the 
pickup service in each node depends on the type of vehicle. This 
consideration is true because the type of vehicle is close related to the 
volume of product that is delivered or pickup at any given node. 

6. Each node has a particular time window for service. Because a location 
(e.g., plant, warehouse, retail store) has specific working periods, the pickup 
or delivery of an order at a location can only take place during its working 
period. A time window is defined by an open & close time that should be 
considered for make a deliver or pickup on the node. Time windows 
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constraints make sure that a service has to be given between the earliest 
arrival time and the latest arrival time. 

7. The same constraint about time windows applies at a vehicle level. This 
means that any given vehicle cannot operate before its open window neither 
after its close window. In addition, an order itself may be associated with a 
specific time interval within pickup or deliver operation must be done. The 
wide of the time window at each node or vehicle is equal to the difference 
between the close time and the open time for service. Indeed, each time 
window has different wide depending on the characteristics of the node or 
the vehicle as is corresponds.   

8. According to the sequence of the route, we will obtain arrivals and 
departures times for each vehicle across the nodes on the network. However, 
we define for each node a specific quantity of docks for service. Indeed, this 
capacity service at each node is not constant because is constrained 
depending the hour of the day. Our approach to deal with this dock service 
capacity is to constraint the quantity of vehicles can arrive at each node and 
at each hour of the day. As can be verified, dock service capacity imposes 
new time windows constraints which emerge according the traffic of 
vehicles waiting for service at a node at any hour. 

9. We have a cost matrix that defines the time or distance required to go from 
each node to all others around a distribution network. Moreover, 
transportation cost for each arc (i,j) depends on the type of vehicle. 

Previous Related Research 

There are well known and extensively studied routing problems which are special 
cases of the General-PDP. The Dial a Ride Problem (DARP) is a routing problem in 
which the loads to be transported represent people. Therefore, we usually speak of 
clients or customers instead of transportation requests and all load sizes are equal to 
one. The Vehicle Routing Problem (VRP) is a routing problem in which either all 
the origins or all the destinations are located at the same depot. The research of time 
constrained pickup and delivery problems emerged in the last 15-20 years. 
Researchers have developed a variety of heuristics and optimization methods. The 
development of optimization methods started in the early 1980s and lasted almost a 
decade. Heuristics for solving real-life pickup and delivery problems began to 
appear in the literature in the 1970s. The majority of published work on General-
PDP is on dial-a-ride problems (DARP). In contrast to this, very little work has 
been done on pickup and delivery of packages and goods with time windows 
constraints (PDP-TW).  
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In regard to routing applications, we found that the variant with less research work 
corresponds to physical product distribution (Mitrovic 1998). We have the basic 
model named Traveling Salesman Problem with Time Windows constraints (TSP-
TW). Christofides et al. (1976) describe a branch-and-bound algorithm in which the 
lower bound computation is performed via a state space relaxation in a dynamic 
programming scheme. Problem instances were solved up to 50 nodes with 
"moderately tight" time windows. Dumas et al. (1995) present a dynamic 
programming algorithm for the TSP-TW. They were able to solve problems of up to 
200 nodes with "fairly wide" time windows. We refer now about the work 
presented by Ascheuer et al. (2001) for the TSP-TW. They tested instances up to 
233 nodes. For an instance of 69 nodes was required 5.95 minutes of computational 
time. In general, all larger instances required more than 5 hours of computational 
time to converge in a feasible solution. The experimental results with the TSP-TW 
made by Ascheuer et al. proved that this problem is particularly difficult to resolve 
for instances with more than 50% of active nodes with time window constraints. 

We move our research now from the typical TSP-TW to a more sophisticated 
problem named as Vehicle Routing Problem (VRP). The most widely studied 
extensions of the VRP are the capacitated vehicle routing problem (C-VRP) and the 
vehicle routing problem with time windows (VRP-TW). The basic model C-VRP 
assumes that all the vehicles are homogeneous with the same capacity and located 
initially at the same node (i.e. depot) and customers have no specific service time 
windows (i.e. can be covered at any time). A more complex model is the VRP-TW. 
On VRP-TW customers have time windows within which they must be covered. 
Solomon (1984) developed 87 test instances for the VRP-TW. Indeed, the largest 
instance he solved was about 100 nodes. Until year 1999 there were 17 instances 
that still remained without being solved. In that year in Rice University, were 
solved 10 of these instances (Cook & Rich 1999). VRP with multiple pickup and 
delivery locations have been studied by Savelsbergh (1998) and Hasle (2003).  

The most general model is the Pickup and Delivery problem with Time Windows 
Constraints (PDP-TW). PDP-TW is more difficult to solve than VRP–TW. This is 
true because, the first problem is a generalization of the second (Palmgren 2001). 
According with Savelsbergh (1995), we have a variant for one alone vehicle 
(SPDP-TW) and one another for multiple vehicles (MPDP-TW). The first case is 
considered a restrictive TSP-TW while the second variant is considered a restrictive 
VRP-TW. The PDP-TW is NP-hard since the VRP and PDP is NP-hard 
(Desrosiers, Dumas, Solomon, & Soumis, 1995). Indeed, it is strongly NP-complete 
to find a feasible solution for the PDP. Furthermore, Tsitsiklis (1992) showed that 
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even the basic TSP-TW is strongly NP-complete. Our PDP-TWDS is less studied 
than the classical vehicle routing problems. Indeed, this problem is a generalization 
of the vehicle routing problem (VRP) and the pickup and delivery problem (PDP). 
The problem involves a set of practical features that are commonly seen in practice 
but have received little attention in the vehicle routing literature. Some complex 
features involved in the PDP-TWDS such as dock service capacity and 
compatibility constraints, have not been addressed in the vehicle routing literature. 
For PDP-TWDS extension we just add some constraints on dock capacity service at 
each node and at each hour of the day. Therefore, the PDP-TWDS is more general 
and more complex to solve than any existing VRP-TW or a single PDP model. 
Furthermore, no existing model has incorporated dock service capacity constraints 
explicitly.  

The first optimization algorithm for the PDP-TW was a branch-and-price algorithm 
presented by Dumas, Desrosiers, & Soumis (1991). A column generation approach 
was proposed. Indeed, a set partitioning formulation is solved by a branch-and-price 
method in which columns of negative reduced cost are generated by a dynamic 
programming algorithm. The method has been successful in solving instances with 
tight capacity constraints and a small number of requests per route. They show that 
this approach is capable of solving some instances with up to 22 vehicles and 190 
requests. Savelsbergh & Sol (1995) presented an integer programming formulation 
of the general pickup and delivery problem (GPDP) which considered several 
pickup and delivery locations of a transportation orders. Savelsbergh, & Sol (1998) 
proposed a branch-and-price algorithm for the PDP-TW using both a heuristic 
algorithm and a dynamic programming algorithm for the column generation 
problem. They applied a new branching scheme based on assignment rather than 
routing decisions. In the past two decades, a tremendous amount of research results 
on these models have been published. Recent books and survey papers include, 
among others, Laporte (1992), Desrosiers et al. (1995), Fisher (1995), Savelsbergh 
and Sol (1995), Powell et al. (1995), Bramel and Simchi-Levi (1997), and Crainic 
and Laporte (1998).  

Cordeau et al (2003), developed a branch-and-cut algorithm for the DARP, based 
on a three-index formulation with a polynomial number of constraints. It uses 
several families of valid inequalities that are either adaptations of existing 
inequalities for the TSP and the VRP. However, direct implementation of methods 
for solving DARP is not a solution for GPDP. The GPDP is mostly capacited and 
the time windows are wider. These differences seem to imply that the set of feasible 
solutions is larger in GPDP than in the problems where people are transported. 
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More recently, a branch-and-cut algorithm for the capacitated multiple-vehicle PDP 
and PDP-TW was later described by Lu and Dessouky (2006). Their formulation 
contains a polynomial number of constraints and uses two-index flow variables, but 
relies on extra variables to impose pairing and precedence constraints. Instances 
with up to 5 vehicles and 25 requests were solved optimally with this approach. By 
using appropriate inequalities, Ropke, Cordeau and Laporte (2006) introduced a 
new formulation for the PDP-TW which do not require the use of a vehicle index to 
impose pairing and precedence constraints. They report computational experiments 
on several sets of test instances and show that this approach is capable of solving 
some instances with up to 8 vehicles and 96 requests. In general, the best results 
found on literature are obtained by column generation methods. Instances of up to 
880 requests and 53 vehicles can be solved with this method. 

Many solution methods have appeared for vehicle routing problems. In general, 
heuristics can solve problems with larger scales in less computation times than 
optimization methods. For example, the recent progress in meta-heuristics such as 
Tabu Search, simulated annealing, and genetic algorithms (Gendreau et al. 1997, 
Golden et al. 1998) can solve vehicle routing problems with wide time windows 
with nearly 500 transportation requests. However, as pointed out by Fisher (1995), 
heuristics usually lack robustness and their performance is very much problem 
dependent. Fisher states that “It’s not uncommon that a heuristic developed for a 
particular geographic region of a company’s operation will perform poorly in 
another region served by the same company.”  

It is not easy to compare different approaches to the PDP-TW. Moreover, in most of 
the cases authors only use randomly generated data. It is not clear what their 
findings mean for "real-world instances" which is actually our case. The existing 
vehicle routing models are useful for various practical applications. However, many 
important practical issues have not been addressed in these models, as pointed out 
by Fisher (1995), "Real vehicle routing problems usually include complications 
beyond the basic model....". Given the enormous complexity of the PDP problems, 
it is not realistic to apply pure optimization methods. Instead, we focus on a strategy 
that can not only be as robust as optimization methods but also are capable of 
finding good solutions within acceptable computation time. Thus, we develop 
hybrid approach to integrate fast heuristics into an optimization framework of a cut 
generation method (e.g., Barnhart et al. 1998, Wolsey 1998).  

Proposed Model 
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A very important characteristic of routing problems is the way in which 
transportation requests become available. In a static situation all requests are known 
at the time the routes have to be constructed. In a dynamic situation some of the 
requests are known at the time the routes have to be constructed and the other 
requests become available in real time during execution of the routes. We focus on 
the static stage. An optimization method may benefit from the presence of time 
constraints since the solution space may be much smaller. To prevent transportation 
requests from being served long before (or after) their desired delivery (or pickup) 
time, we can either construct closed time windows or take an objective function that 
penalizes deviations from the desired service time. In general, we can figure out two 
kind of objective functions related to multiple vehicle pickup and delivery 
problems: 

• Minimize the total time, distance or cost that of all vehicles need to execute 
all the set of transportation requests.  

• Minimize the number of vehicles. This function is almost always used. 
Because drivers and vehicles are the most expensive parts in a system, 
minimizing the number of vehicles to serve all requests is usually the main 
objective. 

Our PDP model is focused on a continuous move strategy implementation. On this 
strategy attempts are made to match multiple truckload pickups and deliveries to 
one truck in sequential order such that the prior delivery is made before the next 
pickup in the sequence. The benefit of continuous moves derives from the overall 
reduction in empty haul distances. Careful planning can ensure that the relocation of 
a truck from the prior delivery location to the next pickup location will minimize 
the overall empty haul distances for the entire network. So, we focus our attention 
on finding optimal routes for the continuous move problem, using a large-scale 
mathematical model. A continuous move (i.e. c-move) trip occurs when two or 
more truckload trips are sequentially combined. That is, if trips Ti1,j1 and Ti2,j2  are 
combined, then a c-move trip will require as follows: 

• Deliver goods from origin i1 to destination j1. 
• Make an empty haul move to a new origin i2.  
• Pick up goods from origin i2 and deliver them to a final destination j2 
and 
• Return to the initial origin i1. 
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For each trip, we compute its total cost, which includes the summation of all costs 
including those associated with the empty hauls. Some assumptions are considered 
in our case. We consider only a daily operation. All trips are planned for one day of 
operation in order to enforce and simplify truck location requirements. In other 
words, all trucks starts the day at an origin “i” and then return to the same origin at 
the end of the day. Another assumption excludes stochastic and dynamic 
considerations. This is justifiable as the model that we propose is meant as a 
planning tool, not as an operational tool. We have chosen a hybrid MIP approach to 
solve our problem. The PDP-TWDS is formulated as a mixed integer linear 
program. We propose to solve the problem in three stages. The first stage constructs 
initials solutions at aggregate level relaxing some constraints on the original 
problem. The other two stages imposes time windows and dock service constraints. 

Relaxed Capacitated Vehicle Routing Problem (C-VRP) Model 

Here we assume different vehicles capacities that are initially located at different 
nodes (i.e. depots). However customers have no specific service time windows 
constraints. In other words the service can be cover at any time. The objective is to 
find an optimal cost solution that completes all the transportation workload orders 
at aggregate level taking in mind vehicle cubic capacity constraints, vehicle 
compatibility constraints and 24-hours of operation per vehicle per day constraints. 
One of the main features of this relaxed C-VRP model is to identify an optimal 
assignment for the vehicles to cover the all the transportation orders. This means to 
identify if one vehicle m1 is going to be grouped (hooked) to another vehicle m2. 
The regular case is when we operate a single trailer with just one haul. However, in 
our model when we group a vehicle m1 with a vehicle m2, as a result we obtain 
physically one vehicle with a new summed capacity. This is a double trailer case, in 
other words, a vehicle operating with two hauls. We present our model in three 
stages as follows: 

Sets and Parameters: 
 
N = set of nodes on the network (i.e. plants, distribution centers or customers) 
R = set of transportation orders to satisfy. Includes product from i to j & empty bottles from j to i  
M = set of vehicles (trailers).  
K = set of SKUS. Including regular products and returnable empty bottles. 
Pi = subset of vehicles located at node i,     
Aij = subset of compatible vehicles m to be used on arc (i,j)                           � (i,j) � N, m � M, Aij � M 
STij = transportation time (minutes) on arc (i,j) on single trailer                 � (i,j) � N 
FTij = transportation time (minutes) on arc (i,j) on double trailer                � (i,j) � N 
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SCij = transportation cost on arc (i,j) on single trailer                                      � (i,j) � N 
FCij = transportation cost on arc (i,j) on double trailer                                     � (i,j) � N 
Dijk = planned demand (cases) from node i to j of SKU k,                                  � (i,j) � N, (i,j,k) � R 
Hk = quantity of cases of SKU k per cubic meter,                                                 � k � K 
Qm = quantity of cubic meters on vehicle m,     
 
Decision Variables: 
 
Xij m1,m2 ≥ 0, integer � # of trips from node i to j using vehicle (m1,m2),         � (i,j) � R, (m1,m2) � 
Aij  
ijk ≥ 0, � quantity of cases to transport from node i to j of SKU k,                                  � (i,j,k) � R F
Wm1,m2  binary �  (1) if vehicle m1 is linked to vehicle m2, (0) otherwise,              

he C‐VRP relaxed can be formulated as the following mixed integer model: 
 
T
 

  � (m1,m2) � Pi 

 
 

 
 
S
  
ubject to:  
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Objective function (1.1) is formulated to minimize the variable cost (i.e. distance) 
of vehicles that are needed to execute the set of transportation requests. This is 
taking in consideration transportation cost on single and double trailer operation. 
Alternatively we have another objective function (1.2) which is formulated to 
minimize the total number of vehicles required to execute the set of transportation 
requests. Constraints (1.3 - 1.4) assure that each vehicle can be assigned exclusively 
to a single or a double trailer operation only.  Constraints (1.5) restrict the 
maximum quantity of trips that a single trailer may perform on a 24 hours time 
horizon. Something similar applies on constraints (1.6) for a double trailer 
operation. Constraints (1.7) assure that the quantity of cubic meters used to 
transport SKU products from node i to node j is equal to the total cubic meters of 
available capacity considering single and double trailer operation. Equations (1.8) 
correspond to balance flow constraints that assures that total transportation volume 
from node i to node j is sufficient to cover the total demand at each SKU level as is 
required. Constraint (1.9) is similar to (1.8) but this is used to restrict the maximum 
volume of product to transport from node i to node j as an upper bound. Finally, 
(1.10) corresponds to the balance flow constraints imposed at vehicle level. 

Pickup and Delivery Problem with Time Window Constraints (PDP-TW) 
Model 

As a result from the previous model we obtain the optimal assignment of the 
vehicles. That is, binary variable Wm1,m2  identify which vehicles is going to operate 
a single trailer (i.e. with just one haul) and which others will operate on double 
trailer (i.e. a vehicle operating with two hauls). From here to the end, all double 
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trailers will be modeled as one only vehicle with a summed capacity. Indeed, we 
can verify on the previous model that integer variable Xij m1,m2 calculates the optimal 
quantity of trips required on each final vehicle and on each arc between origin 
nodes and destination nodes. Our next PDP-TW model is implemented in order to 
take advantage from the previous information. Thus, on this model we add time 

indows constraints. We model as follows: w

 
Sets and Parameters: 
 
R = set of transportation orders to satisfy from node i to j on vehicle m 
L = set of stops or sequences on a any given route (1..9) 
Xij m = # of trips from node i to j using vehicle m,    
INi  = opening time at node i,   
CNi  = closing time at node i,   
IVm  = opening time of vehicle m,   
CVm  = closing time of vehicle m,   
TCijm = transportation cost on arc (i,j) on vehicle m   
Zijm = transportation and loading time on arc (i,j) on vehicle m   
 
Decision Variables: 
 
Yij ml binary � (1) if vehicle m is routed from node i to j on sequence l, (0) otherwise.  
� (i,j,m) � R, l � L 
Tij ml ≥ 0 � arrival time at node j from node i on vehicle m at sequence l,   

he PDP‐TW can be formulated as the following mixed integer model: 
 
T
 

      � (i,j,m) � R, l � L 

 
 
S
  
ubject to: 
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Expression (2.1) is formulated as a multi-objective function. The first part of the 
function is used to minimize the total transportation variable cost (i.e. distance) of 
the vehicles required to execute all the set of transportation orders. The second part 
minimizes all the set of arrival times that corresponds for each individual trip 
(i,j,m). With this formulation we calculate the earliest arrival time for each trip. 
Constraints (2.2) assure that all the set of trips obtained on model 1 are fully 
covered on model 2. These constraints are imposed for each vehicle and for each 
pair of origin and destination nodes. Equations (2.3) correspond to the balance flow 
constraints imposed at vehicle level. Equations (2.4 - 2.5) are formulated for time 
windows constraints required on each node. Constraints (2.6 - 2.7) correspond to 
time windows formulation for each vehicle. Constraints (2.8) assures that each 
vehicle must depart from just one only origin node on any trip. Constraints (2.9 - 
2.10) are formulated in order to calculate the arrival times for all the set of trips 
considering all the nodes and all the vehicles. In other words, these constraints 
correspond to the time windows precedence for each trip and for each vehicle.  
 
4.3 Pickup and Delivery Problem with TW and Dock Service Constraints 
(PDP-TWDS) Model 
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As a result from the previous PDP-TW model we obtain the optimal assignment of 
the vehicles considering vehicles capacity and time windows constraints as well. 
That is, binary variable Yij ml identify if a vehicle m is routed from node i to j on 
sequence l. This is the route sequence for each vehicle. At the same time, positive 
variable Tij ml, calculates the arrivals time at each node for all the vehicles. With this 
in mind, we can proceed now to apply dock service capacity constraints on our final 
model. Our previous model works as the master model. Then, the logic we apply 
here is to iteratively generate cuts in a Brach & Cut scheme. For that purpose we 
identify in the incumbent solution, at each arrival node and at each working hour, 
the subset of vehicles that are violating the dock service constraint. For that purpose 
we compare the quantity of vehicles that are being dispatched simultaneously at a 
given node and at a given hour versus the docks quantity that the node is capable to 
attend at a given hour. Then we add these cuts to the master model. The generated 
cuts are kept in a pool of constraints that are managed separately of the rest of the 
cuts generated automatically by the B&C scheme. The procedure continues until is 
found the first optimal solution for the problem that does not violate the dock 
service capacity on all nodes and at each 24-hour planning day. We model as 
ollows: f

 
 
Sets and Parameters: 
Sih = quantity of docks at node i at working hour h,   
E = set of cases where a vehicle is violating the dock service constraint at node i at hour h 
 
Decision Variables for vehicles violating dock service constraint at node i and at hour h (e � E):  
B+e ≥ 0 � quantity of time (hours) between vehicle α & vehicle β on case e,                          e � E 
B­e ≥ 0 � quantity of time (hours) between vehicle β & vehicle α on case e,                          e � E 
Ue binary � (1) if vehicle α is served before vehicle β on case e, (0) otherwise                    e � E 
 
Subject to: 
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Constraints (3.1) deal with a set of deviational variables that calculate the offset 
time on the arrivals to node j for each combination of vehicles α and β. We impose 
these constraints for any combination of vehicles α and β that may be arriving at a 
given node and at the same time and as a consequence they might me exceeding 
dock service capacity. Constraints (3.2) assure that the offset time on any given pair 
of vehicles α and β violating dock service capacity must be at least one hour. 
Constraints (3.3 – 3.4) correspond to upper bounds imposed for deviational 
variables. In our case we define 24 hours as the time frame horizon. As can be 
verified on the previous model, these constraints grow exponentially as the number 
of nodes and vehicles are large. Thus on the last model we add these constraints on 
an iterative scheme only as is required. We model a linear relaxation of the PDP-
TW problem resulting in a master problem solved very efficiently by a MIP solver. 
On this stage we relax the dock service capacity constraints. An integer feasible 
solution is obtained for time windows constraints on all nodes and all vehicles. An 
iteration procedure is performed to add dock capacity constraints as necessary. We 
found that our approach is capable of obtaining near-optimal solutions in acceptable 
computational times for real business instances with up to 150 vehicles and 500 
transportation orders.  

Experimental Results and Conclusions 

We present some results indicating the efficiency of our method for solving large 
scale instances (150 vehicles and 500 transport orders). CPU configuration used for 
our implementation was Win X64, 2 Intel Cores at 1.4GHz. We implement our 
model on X-PRESS MIP Solver from FICO (Fair Isaac). Table 1 shows the optimal 
solutions that we found with our model as we can input different values on two 
parameters: (1) quantity of vehicles to be considered per arc and (2) quantity of arcs 
to be considered per vehicle. Basically these two parameters affect the network size 
to be considered by our model. If our network is small we can obtain good solutions 
in short computational times. However, the trade off we have to pay with this 
strategy is that it is possible we have an over constrained solution space. By the 
other hand, on the last part of the table (40-40), our network size is larger and 
equires more time to be solved. However we obtain as a result better solutions.  r

 

 
Table 1 Optimal solutions found. (1) # of vehicles per arc versus (2) # of arcs per vehicle 
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20 30 40 40
20 30 30 40

221,470 219,011 218,348 218,348
Comput Time 

(Mins) % Gap Best IP 
Solution % Gap Best IP 

Solution % Gap Best IP 
Solution % Gap Best IP 

Solution
2 10.94% 254,329 8.29% 246,870 6.86% 244,775 +inf NA
3 9.97% 251,664 6.92% 243,310 5.33% 240,881 8.57% 244,719
5 8.09% 246,555 6.71% 242,775 3.87% 237,317 8.10% 243,485

10 7.91% 246,065 5.72% 240,235 3.76% 237,103 5.57% 236,943

# Vehicles per Arc
# Arcs per Vehicle

LP Solution

 
 

As we can verify on Table 1, we can obtain good solutions in short computational 
times. As long as we have more time we can improve our solutions. This is true for 
example when we run our model with a network formulated with up to 40 vehicles 
per each arc and 40 arcs per each vehicle. Our best solution is obtained in less than 
10 minutes. From this solution we move to the next stage that corresponds to 2nd 
and 3rd model. It is important to consider that these two models were implemented 
on just one single program. That is, the 2nd model is the master model and the 3rd 
model runs iteratively adding the cuts to consider dock service constraints as 
necessary. As follows, on table 2 we show some useful statistics indicating 
evidence about how constrained is the dock service capacity on each node. As long 
as we have more added cuts on a node, this is a clear indication about how many 
vehicles asking for service are violating the dock service capacity. This information 
is very interesting and useful for business reasons. This is true, because 
management can be advised to make some changes on general infrastructure (i.e. 
open more docks) in order to assure transportation service.  

 
t
 

Table 2 Quantity of cu s added on each node 
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NODE # Cuts Added
1 33
2 13
4 3
5 28
6 16
14 88
15 20
16 3
19 1
27 3
28 16
31 3
32 1  

 

From practical business application standpoint, this operations research application 
was developed & implemented to optimize the transportation network between 
manufacturing plants and distribution centers. During the last years, the firm was 
interested in developing a better transportation & routing schedules. Indeed, this is 
the first OR application that has been implemented in the bottler company where 
we implement this model. It is important to point out that the overall results have 
been very positive. The firm’s top management recognize that features included on 
the OR model implemented were truly outstanding due to a fine work at a technical 
level & a practical ease of use as well. The project was a major undertaking, 
requiring a great deal of thought and effort. The first plans for transportation routes 
suggested by the optimization model were implemented eight months ago. 
Throughout the ramp-up and launch of the project, these plans for distribution 
operation were analyzed and the company found to be an extremely viable idea. 
Sometime after, during the course of the project, has resulted in a significant 
increase in productivity and direct savings to the firm. We can list some of the 
benefits that the company has achieved within this project: 

• An increase on effectiveness on the planning process required to set up an 
efficient transportation & route schedules. The typical fully-manual 
planning process time was reduced from 6 hours to less than an hour using 
the new OR application. This permitted to the company to fine its truck 
capacity by season on a dynamic basis. As a result the company achieves an 
optimal capacity to attend the demand on each territory and leveling by 
season. 

• Identify an efficient set of activity measures to target & balance on each 
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truck resource to schedule. This results on an optimal fleet of trucks, drivers 
& warehouse workers.  

• Streamline truck capacity to align it to a new transportation strategy. The 
added throughput allows the firm to defer investments on trucks and 
infrastructure that were originally allocated. The save on investments for 
trucks was about 8% of the entire fleet. 

• Identify & implement an optimal cost of service. This allowed the firm to 
set an optimal deliver frequency. This means less travel time between plants 
and depots and a 14% increase in volume delivered per route per day. 

As was verified, our problem considers the schedule of several vehicles 
simultaneously. As a results some difficulties arises about dock service capacity 
issues. The problem instances that we found in the business environment are above 
150 vehicles and more than 500 transportation orders to schedule and with a high 
presence of time windows & dock service constraints. Indeed, time windows 
constraints can be found on the nodes or on vehicles as well. MIP models when are 
used to solve instances as described, require a strong computational effort in time. 
This strategy usually compromises its practical implementation in business 
applications. We proposed on this work a model implementation that offer good 
quality solutions (i.e. optimality ≥ 90%) in short computational times (i.e. time ≤ 5 
minutes). We implemented our model on a MIP formulation with a heuristic on the 
last stage in order to add dock service capacity constraints on an iterative scheme 
only as is required. Computational results for a real-world instance with up to 150 
vehicles and 500 transportation orders are reported, showing the suitable of our 
model to provide good quality solutions. Given the current state of the art for the 
solution of vehicle routing problems with time windows, it seems fair to say that 
these are large instances. 

With respect to the literature on routing and scheduling problems, it is interesting to 
observe that although PDP are as important as VRP, they have received far less 
attention. Apart from the vehicle capacity constraints and the intrinsic precedence 
constraints, time constraints arise in almost every practical pickup and delivery 
situation. Time constraints play an even more prominent role in PDP-TW. We can 
point out as follows: 

1. Although the single vehicle VRP is NP-hard, it can be solved efficiently as 
long as the number of transportation requests is relatively small, which is 
the case in many practical situations. However, the main problem in solving 
multiple vehicles VRP (i.e. PDP) is the assignment of transportation 



Daena: International Journal of Good Conscience. 5(2) 45-68. Octubre 2010. ISSN 1870-557X 
 

 

66

requests to a set of several vehicles.  
2. Moreover, if there are no time constraints (i.e. PDP), finding a feasible 

pickup and delivery plan is trivial: arbitrarily assign transportation requests 
to vehicles, arbitrarily order the transportation requests assigned to a vehicle 
and process each transportation request separately. The presence of time 
constraints (i.e. PDP-TW) complicates the problem considerably. The 
problem of finding a feasible pickup and delivery plan is NP-hard.  

3. Assigning transportation requests to vehicles in the PDP-TW is much more 
difficult than assigning transportation requests to vehicles in the VRP-TW. 
In VRP-TW, all the origins of transportation requests are located at the 
depot. Therefore, transportation requests with geographically close 
destinations are likely to be served by the same vehicle. In the PDP-TW, 
geographically close destinations may have origins that are geographically 
far apart and we cannot conclude that they are likely to be served by the 
same vehicle. 

We reported part of the research results we implemented on Embotelladoras ARCA 
(Coca-Cola) aiming at the optimization of Manufacturing & Transportation 
operation. One of the individual optimization problems arising here is the task to 
schedule the operation on a transportation network with several plants and 
distribution centers. In this case we aim to make an optimization over a full fleet of 
tractors vehicles. In general, the performance of a method is difficult to compare. 
Clearly, the diversity of theoretical and practical problems is immense. 
Consequently, there are not too many papers working on the same problem. 
Constraints can be different, objective functions can be different. Another possible 
way to compare a method is in checking the problem size that can solve and the 
amount of computer time and space it needs. It is clear that future research should 
be done in order to statistically test our method. This issue will be overcome of the 
subsequent paper. However the results obtained so far, indicate that our model is 
robust to solve this hard problem, reaching good solutions in short computational 
times. 

In this paper, we considered a particular PDP application that is frequently 
encountered in the real-world logistics operations. Our PDP-TWDS problem 
incorporated a diversity of practical complexities. Among those are a heterogeneous 
vehicle fleet with different travel times, travel costs and capacity, order/vehicle 
compatibility constraints, and different start and end locations for vehicles. Instead 
of assuming that each vehicle becomes available at a one only central depot, we 
modeled as each vehicle is given a start location where it becomes available at a 
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specific time of the day. Particularly, on our PDP-TWDS extension we add some 
constraints for dock capacity service at each node and at each hour of the day. The 
current situation in freight transportation reflects the need for improved efficiency, 
as the traffic volume increases much faster than the road network grows. Moreover, 
along with the increasing use of geographical information systems, companies seek 
to improve their transportation networks in order to tap the full potential of possible 
cost reduction. Over the last decades extensive research has been dedicated to 
modeling aspects as well as optimization methods in the field of vehicle routing. 
Still, there are areas and sub-problems, yet, to be researched. 
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